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The two-dimensional steady flow of a fluid over a semicircular obstacle on the bottom 
of a stream is discussed. A linearized theory is presented, along with a numerical 
method for the solution of the fully nonlinear problem. The nonlinear free-surface 
profile is obtained after solution of an integrodifferential equation coupled with the 
dynamic free-surface condition. The wave resistance of the semicircle is calculated 
from knowledge of the solution at  the free surface. 

1. Introduction 
In this paper, we consider the steady behaviour of an inviscid, incompressible fluid 

flowing in a horizontal stream, and disturbed by a semicircular obstacle lying on the 
bottom. The solution to such a, problem is expected to provide at least qualitative 
insight into the mechanism of wave generation by submerged bodies moving beneath 
a free surface. 

The motion of concentrated singularities beneath a free surface is an old problem 
in fluid mechanics, and is closely related to the topic of the present paper. Havelock 
(1927) calculated a linearized solution to the problem in which a dipole moves with 
constant velocity beneath the surface of an infinitely deep fluid a t  rest. He then 
assumed that, at some first order of approximation, his solution would also describe 
the flow about a circular cylinder beneath the surface of an infinitely deep fluid, a5 
well as the flow about a semicircular obstruction on the bottom of a horizontal canal. 
Various other authors have presented similar linearized solutions to problems of this 
type. The book by Kochin, Kibel’ & Roze (1964) contains detailed and elegant solu- 
tions for the cases of a point vortex, a point source and a dipole moving beneath the 
surface of an infinitely deep fluid. The corresponding solutions for a fluid of fixed 
finite depth are given in Wehausen & Laitone (1960) and Gazdar (1973). 

The Havelock solution to the motion of a dipole beneath a free surface was recon- 
sidered by Tuck (1965). He showed that the ‘body ’ produced in the fluid by the dipole 
is in fact not closed, so that the front and back stagnation points lie on different stream- 
lines. Thus a linearized solution to the present problem, to be discussed in $3, will 
necessarily differ from Havelock’s, since we shall require a closed body a t  all orders 
of approximation. In addition, Havelock’s solution results in a dispersion relation 
which describes waves in an infinitely deep fluid, while the dispersion relation resulting 
from our linearized solution describes a fluid of finite depth. This fact is responsible 
for the existence of a second class of solutions to our problem, when the fluid flow is 
supercritical, which are symmetric about the semicircle and possess no waves. 
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Recently, a number of investigators have sought to retain the free-surface condition 
in its exact nonlinear form when dealing with problems of this type. Von Kerczek & 
Salvesen (1 977) present a numerical solution to the two-dimensional steady problem 
in which waves are produced on the surface of a stream of finite depth by a given 
pressure distribution on the surface. The numerical method they employ is one which 
they have used successfully in the solution of similar problems, and consists of placing 
a finite-difference grid over the region of interest in the physical plane, and then 
iterating to find the location of the free surface such that all the flow equations and 
boundary conditions are satisfied. Haussling & Coleman (1977) describe the numerical 
solution of time-dependent potential flow problems of great generality by a boundary- 
fitting technique, in which a curvilinear co-ordinate system is generated numerically, 
so that lines in the new co-ordinate system correspond to physical boundaries. Shanks 
& Thompson (1977)  show how this technique may be used to solve numerically free- 
surface problems in which time dependence and even viscosity are included. 

In the present paper, we treat the physical co-ordinates, rather than the velocity 
potential and stream function, as the unknowns of the motion. Thus the location of 
the free surface in the inverse plane is now known. The bottom of the stream is trans- 
formed into a straight line using conformal mapping; consequently, an integral 
equation may be derived which involves values of the flow variables a t  the free surface 
only, with the bottom condition being satisfied automatically by reflection. Thus, 
points in the numerical scheme need only be placed at the free surface, rather than 
throughout the entire fluid. Details of this formulation are given in $ 2. The linearized 
solution is presented in $3, and our numerical scheme in $4. Section 5 contains the 
results of numerical computations. Section 6 discusses the possible non-uniqueness of 
solutions for Froude numbers greater than one. 

2. Formulation 
We consider the steady, two-dimensional potential flow of an inviscid, incompress- 

ible fluid. Far upstream, the flow is uniform, with constant velocity c and fixed depth 
H .  The fluid is subject to the downward acceleration of gravity g ,  and the radius of the 
disturbing semicircle is R. 

The problem may immediately be non-dimensionalized with respect to the velocity 
c and depth H .  The velocity potential 9 and stream function $ are normalized with 
respect to the product cH. The channel bottom is taken to be the $ = 0 streamline, 
so that the free surface is y? = 1. There is thus a two-parameter family of solutions to 
this problem, dependent upon the depfh-based Froude number 

C F=- 
(gHP 

and the dimensionless circle radius 
R 

" = H a  
A sketch of the non-dimensional flow is given in figure 1. 

the usual Cauchy-Riemann equations 
The irrotationality and incompressibility of the fluid in the interior is expressed by 
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FIGURE 1 .  The non-dimensionalieed problem and co-ordinate syetem. 

where the subscripts denote partial differentiation. The condition of no flow normal 
to the bottom y = h(x) may be written 

where 
uh, = v at y = h(x) ,  

and u and v are the horizontal and vertical components of velocity respectively. At 
the free surface of the fluid, we impose the Bernoulli equation 

& F 2 ( ~ 2 + v 2 )  +y = &F2+ 1. (2.3) 

It is convenient at this stage to introduce the complex variables z = x+iy  and 
f = 9 + i$, and the conjugate complex velocity 

Now the solution of the above-stated problem can be greatly assisted by the choice 
off as independent variable, rather than z. This choice, first suggested by Stokes 
(1880), has the obvious advantage of removing the difficulty associated with the 
free-surface condition, since, although the location of the surface is unknown in the 
z-plane, it has the known location $ = 1 in the f-plane. However, we note that the 
Jacobian of the transformation from the z-plane to the f-plane becomes zero a t  the 
two stagnation points on the semicircle. These points would thus map into singularitiee 
in the f-plane. To avoid this, we first map the z-plane into a [-plane in which the bottom 
streamline is a straight line, free of singular points. The mapping required is the 
familiar Joukowski transformation 

where the new variable [is written as [ = 6 +it. Figure 2 shows the mappings involved 
in the formulation of this problem. 

By defining a new c-plane conjugate velocity 
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FIGURE 2. The various co-ordinate systems used in the formulation of the problem. 

we may transform the z-plane equations (2.1)-(2.3) into the (-plane. Thus we seek an 
analytic function f (6) satisfying the bottom condition 

V = O  on r = O ,  

and the appropriately transformed Bernoulli equation a t  the free surface. 
As there are now no singular points either within the fluid or on the fluid boundaries 

in the (-plane, we may interchange the roles of 5 and f. In the f-plane, we seek an 
analytic function (( f) satisfying the bottom condition 

r = O  on @ = O .  (2.4) 

The final form of the Bernoulli equation in the f-plane is 

where z ( ( )  is found from 
z = (+ ( 6 2 - - 0 1 2 ) * ,  

and the bars signify complex conjugation. The branch of the radical in (2.6) is chosen 
so that z = 2( when a = 0. 

We now derive an integral equation relating the real and imaginary parts of {‘(f) 
along the free surface $ = 1. Consider the function 

This function is analytic in the f-plane strip 0 < $ < 1 and vanishes as $ +-OD. 
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Far downstream, x( f) is bounded and its mean value is zero. By the bottom condition 
(2.4), we have 9 { C ( f ) }  = 0 on $ = 0 ;  consequently the strip 0 <$ < 1 may be 
extended by reflection about $ = 0 to form the augmented section -9 < $ < 1.  
The bottom condition (2.4) then requires that values of on the image strip be related 
to values on the true strip by the formula 

When Cauchy's integral theorem is applied to the function xu) on a rectangular 
path consisting of the free surface $ = 1 and its image $ = - 1 connected by vertical 
lines a t  4 -+ f 00, we obtain 

for points f = #+i$ within the path of integration. We now let f become a point on 
the true free surface, so that f = 4 + i. The path of integration is as before, except 
that the point f = # + i  is bypassed by a semicircular path of vanishingly small 
radius. For points on the free surface, we have 

The desired relation is obtained by taking the real part of (2.9), using (2.7) to eliminate 
quantities at  the image free surface. This yields 

The free-surface profile is thus obtained by solving the Bernoulli equation (2.5) 
coupled with (2.10) and subject to the radiation condition 

[+=if as $+-a. (2.11) 

Once the shape of the free surface has been determined, all other flow quantities 
may be obtained. Of particular interest is the wave drag D, which is the horizontal 
component of the force acting on unit width of the semicircular cylinder, made dimen- 
sionless by reference to the quantity pgH2. Here p is the fluid density. We have 

where p is the pressure on the surface of the semicircle (in units of p g H ) .  Transforming 
this equation into the Y-plane yields 

(2.12) 

which in the f-plane becomes 

(2.13) 
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are the solutions to the equations 

(2.14) 

3. The linearized solution 
In this section, we derive an approximate solution to the equations of motion by 

assuming that the square of the circle radius, a2, is a small quantity. This solution is 
in fact the first-order term in a regular series expansion in the parameter a2; in prin- 
ciple, the series may be continued to any desired order, although the complexity of 
the equations to be solved becomes prohibitive for any order greater than the first. 

We express the solution [(f) as the regular perturbation expansion 

5 ( f )  = Sf+ a291(f) + @a4), (3.1) 

and seek to determine the function Sl(f) in the form 
fm 

We observe that equation (3.2) satisfies the bottom condition .%{4tl} = 0 on @ = 0. 
By applying the linearized free-surface condition 

1 1 - 4 2  on @ =  1, 
2F9(92+ 1)  + 2($2 + 1)2 

(3.3) 

the real function C(K) is determined to be 

e-K(K + 1 / F 2 )  
2 ( ~ c o s h ~ -  1 /F2s inh~) '  C(K) = 

The free-surface condition (3.3) and the assumed form of the solution (3.2) both 
require that the real and imaginary parts of the function Sl be odd and even functions 
of #, respectively. However, this condition is only satisfied when F2 > 1, since in this 
case the function C(K)  is non-singular, and so the right-hand side of (3.2) is well-defined. 
A free-surface profile is predicted which is symmetric about 9 = 0 and possesses no 
waves. 

For the critical case F2 = 1, there is no solution, since Sl becomes unbounded due 
to a singularity in the function C(K) at K = 0. 

When Pa < 1, the function C(K) possesses a singularity at  K = K ~ ,  where K~ is the 
positive real root of the dispersion relation 

tanh K~ = F2~,,, 

and so the Fourier integral in (3.2) fails to exist in the usual sense. It is thus necessary 
to interpret (3.2) as a contour integral in the complex K-plane, with the path of inte- 
gration bypassing the pole singularity a t  K~ in a semicircular path of vanishingly small 
radius. In  this case, the solution (3.1) becomes 

Far upstream, the two terms within the brackets in (3.4) cancel, so that the radiation 
condition (2.11) is satisfied. Far downstream, however, the terms within the brackets 
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reinforce, summing to twice the value of the second term. Thus the limiting form of 
(3.4) downstream is 

where the wave amplitude A, is given by 

l / P ) s i n h ~ ~  
A ,  = 2aa 

( I  - l/Pa+K~P*)COShKo' 

The free-surface profile is obtained by setting y? = 1 in (3.4) and then using (2.6) 
to obtain x(C) .  The surface possesses a regular wave train downstream of the bump, 
but is free of waves upstream. Far downstream, (3.5) yields the free-surface profile 

y +  1 - A , s i n ~ ~ ~ + O ( ~ ~ )  as x++m.  

Note that the wave amplitude A, defined by (3.6) is twice the value calculated by 
Lamb (1932, p. 410, equation (9)). Implicit in Lamb's solution is the assumption that 
the length of the disturbance on the bottom must be of the same order of magnitude 
as the undisturbed fluid depth; consequently, for a semicircular disturbance where 
this assumption is no longer valid, Lamb's theory ceases to apply. 

The linearized wave drag D is calculated by inverting (3.4) to obtain a relation of 
the formf=f(c),  and then substituting into (2.12) with 7 = 0 ($ = 0). This results 
in the classical formula 

(3.7) 

which may be found in Lamb (1932, p. 415). 

4. Numerical methods 
This section describes the numerical scheme used to solve the nonlinear system 

(2.6), (8.10) and (2.11), a t  the N +  1 equally spaced surface points #o,#l, . . . ,#N.  The 
quantities #o and #,,, are chosen to represent - oo and + a, respectively. 

The integrodifferential equation (2.10) is first truncated upstream and downstream at 
the points #o and # N .  The error introduced by this process will be discussed in 5 5. Now 
the singularity is subtracted from the Cauchy principal value integral, leaving a non- 
singular integral plus a natural-logarithm term. We next wish to discretize this 
approximation to the original equation (2.10), but in a manner which allows us the free- 
dom to specify conditions at the first point g50 in accordance with the radiation condition 
(2.11). This is achieved by evaluating the integrodifferential equation at the N mid- 
points #,-i, k = 1, .. ., N. After discretization, we obtain a matrix system of the form 

2 N  1 N  1 
[&*-&I-- a,,[C;-&] = -- b, j l l ; - -~;-~log~"-~k-b (k = 1 ,..., N ) ,  (4.1) 

nj=O nj=0 n #k-f - $0 

where the primes denote differentiation with respect to $, along $ = 1. The coefficients 
a,, and bkf are known functions of #k-f and $,, and depend upon the quadrature 
formula used to discretize the integrals. We have used Simpson's rule for this purpose. 
The quantities C - 4  and qL.-+ are now written in terms of values of r($, 1) and q'(#, 1) 
at neighbouring whole points #,-,, &, #k+l etc. by means of a three-point interpolation 
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formula. This interpolation formula must be chosen to be consistent with the pare- 
bolae fitted by the Simpson’s rule integration used in obtaining (4.1), otherwise un- 
acceptably large errors may result. Equation (4.1) becomes 

If E and 7; are assumed known, (4.2) may be inverted to yield the solution 

In practice, we usually obtain $,, qo and to from the linearized solution, and then 
calculate 5; from the Bernoulli equation (2.5) evaluated at  the first point 

The vectors ti and qi are now obtained by numerical integration, using Gregory’s 
correction to the trapezoidal rule. Thus 

where the wij are appropriate weights. 
..., $,,, yields a 

system of N nonlinear algebraic equations in the N unknowns q;, ..., q,,’,, after the 
functions g, 5 and q have all been eliminated using (4.3) and (4.4). This system is then 
solved by a modified Newton iteration scheme. Denoting the pressure at the i t h  free- 
surface point by pi, we seek to solve 

The Bernoulli equation (2.5) evaluated at each of the N points 

p,(q;) = 0 (i,j = 1, ..., N ) .  

We begin the iteration process with suitable estimates for the unknowns 7;. These are 
usually provided by the linearized solution. The estimate $(k) at the kth iteration is 
updated according to the formula 

q;(k+l) = q i ( k )  + A(K) 
3 ’  

where the correction step A$k) is the solution to the matrix equation 

If at any iteration in the Newton process a worse estimate of the solution is obtained 
than before, in the sense that P!.:&l) > P$L, where P,,,, is t,he root-mean-squared 
residual pressure 

then the correction step A\F) is halved and the iteration is repeated. 
The above scheme has usually been found to be quadratically convergent; typically, 
converged solution with P,,, c 10-lo is obtained from the linearized solution in 

five iterations. When 131 points are used, the process of obtaining the linearized solu- 
tion and the converged nonlincar solution requires about three minutes of computing 
time on a CDC CYBER 173 marhine. 
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FIGURE 3. A comparison of the linearized (- -) and nonlinear (-) solutions to the problem 
for the 0-0 P = 0.6, a = 0.2. A uniform train of Stokes waves (- - - - - -) of the same phase 
and wave height as the downstream waves in the nonlinear solution is also shown. 

For large values of the circle radius a, it is often not possible to obtain a converged 
nonlinear solution using the linearized results as an initial approximation in the 
Newton scheme. For these cases, a previously-computed nonlinear solution is used 
instead. 

The wave drag D is computed from the convcrged nonlinear free-surface profile 
using (2.8) to generate values of 6 a t  points along the bottom + = 0. A cubic spline 
is then fitted through these points so that (2.14) may be solved for #*a by Newton’s 
method. Once these quantities are known, (2.13) is evaluated using the trapezoidal 
rule, since the integrand is well-behaved a t  all points within the range of integration. 

5. Numerical results 
5.1. Subcritical case, F < 1 

In  figure 3, we compare the linearized and nonlinear solutions for the case P = 0.5, 
a = 0.2. The linearized free surface possesses a wave-free region upstream of the semi- 
circular bump, followed by a regular wave train downstream. These general features 
are confirmed by the nonlinear result, although the amplitude of the nonlinear waves 
downstream is significantly greater. In addition, the nonlinear waves are noticeably 
non-sinusoidal, with narrow crests and broad troughs. The ratio of peak-to-trough 
amplitude to the wavelength (i.e. the steepness) is approximately 0.091. Since 
Newton’s method fails to converge for larger values of the circle radius a, these are 
the steepest waves that we are presently able to compute at this value of the Froude 
number. By contrast, the steepness of the Stokes wave of maximum theoretical height 
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at this Froude number is known to be approximately 0.14 (see, e.g. Cokelet 1977). 
This inability of our numerical method to compute very steep waves is a consequence 
of the relatively small number of free-surface points (about 20 points per wave cycle) 
to which we are restricted by the storage limits of the computer, and the inclusion of 
more points at  the free surface would doubtless allow waves of much greater steepness 
to be obtained. 

The corresponding nonlinear Stokes wave train for this value of the Froude number 
and wave height, computed by the numerical method of Schwartz & Vanden-Broeck 
(1979), is also shown in figure 3. The nonlinear result is virtually indistinguishable 
from the Stokes wave train, except within a distance of about half a wavelength 
downstream of the circle. A discrep.ancy also appears over the last quarter-wavelength 
downstream. This is a numerical error caused by the truncation of the integrodifferen- 
tial equation (2.10) downstream at the last point q5,". 

On the other hand, the truncation of the integrodifferential equation upstream at 
the first point q50 has a more pronounced effect, being responsible for the generation 
of spurious waves of small amplitude in the upstream portion of the flow. Their 
amplitude, although small, can be altered by very small changes in the values of 
qo, etc. imposed at the first point q50, while the downstream portion of the flow and 
the drag on the semicircle remain unchanged. The amplitude of the upstream waves 
in figure 3 has been reduced as far as possible by increasing the value of ?lo slightly 
above the value suggested by the linearized solution. A further reduction in the 
amplitude is to be expected by similarly varying the other flow quantities imposed at  
the point q50; this has not been pursued here, however, since each alteration to a 
flow quantity a t  q50 involves a full solution of the problem. In view of the physical 
implausibility of upstream waves in the present problem, the ' correct ' conditions to 
be imposed at  do can be defined as that choice which removes these spurious waves 
en tirely. 

Figlire 4 shows the dependcnce of the ware drag D upon the circle radius a, for 

FIGURE 4. The dependence of wave drag upon a for the linearized (--) and 
nonlinear (m) solutions, when F = 0-5. 
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FIGURE 5. The pressure on the surface of the semicircle as a function of y 
for the cam F = 0.5, a = 0.2. 

F = 0.5. The linearized drag, calculated from (3.7), is compared with the drag obtained 
from the nonlinear solution, using (2.13). The linearized and nonlinear results agree 
well until a circle radius of about 0.12 is reached. Thereafter, nonlinear effects domi- 
nate, producing a force on the semicircle which is well in excess of the predictions of 
linearized theory. 

The pressure on the surface of the circle for the nonlinear solution is shown as a 
function of y in figure 5,  for the case considered in figure 3. To show more clearly the 
differences between the pressure distributions on the upstream and downstream 
portions of t,he semicircle, the. pressure has been subtracted from the reference value 

F2 
as 

P, = - 2- (as-$) - (a2--2)* + 1 + IF2, 

which is the pressure that would be observed on the surface of the semicircle if the 
streamline $ = 1 had the same shape as is obtained for two-dimensional potential 
flow about a circle in an infinite fluid (f = 2c). Since P, is symmetric about x = 0, 
it makes no contribution to the wave drag D, which is therefore the area enclosed by 
the curve in figure 5. 

In figure 6, the wave drag is shown as a function of F, when u = 0.1. For low values 
of the Froude number, the linearized and nonlinear results are in good agreement, 
but this agreement becomes steadlily worse as the Froude number is brought closer 
to the critical value F = 1.  Note that the linearized drag has the limiting behaviour 

D + 4n2a4 as F + 1, 
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F 

FIGURE 6. The dependence of wave drag upon F for the linearized (-) and 
nonlinear ( .) solutions, when a = 0.1. 

even although the linearized wavelength and wave height become infinite at this value 
of the Froude number. 

The region of the parameter space in which we have been able to calculate nonlinear 
solutions possessing downstream waves is displayed in figure 7. The highest values of 
a for which the Newton process converged are marked on the diagram, for a range of 
different Froude numbers. 

Although our numerical method has so far failed to yield a converged nonlinear 
solution for F = 1, it seems clear that such solutions should exist, since the free- 
surface profile is dominated by the Stokes waves which are formed downstream of 
the semicircle. The dashed line in figure 7 indicates the approximate position of the 
boundary of the region within which we conjecture the existence of solutions possessing 
a train of downstream Stokes waves. Note that this region extends well into the super- 
critical regime F > 1, terminating at  F = 1.286, which is Yamada’s (1957) result for 
the highest solitary wave (indicated with a dotted line in figure 7). The portion of the 
dashed line lying in the region F < 1 was obtained from our numerical results by 
extrapolating plots of wave height versu8 a2 up to the maximum wave height for 
Stokes waves computed by Schwartz (1974) and Cokelet (1977). 

5.2 .  Supercritical case, F > 1 

In the linearized theory, the critical value F = 1 is associated with the emergence of 
a fundamentally different type of solution, symmetric about x = 0 and possessing no 
waves. The nonlinear results confirm the existence of such a solution. Despite its 
appearance, this solution bears no relation to the solitary wave, since it reduces to 
uniform flow as a 3 0. 
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FIQTJRE 7. The region in the parameter space in which nonlinear wave-like solutions may be 
obtained, The points indicate the highest values of a for which Newton’s method converged, 
and the dashed line is the boundary of the region in which solutions are conjectured to exist. 
The dotted line is Yamada’s (1967) result for the highest solitary wave. 
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The region of the parameter space in which these nonlinear wave-free solutions may 
be calculated is again restricted, as is shown in figure 8. We have marked on this figure 
the largest values of a for which the Newton process converged, for a range of different 
Froude numbers. Our numerical results suggest that, like the linearized solution, the 
nonlinear wave-free solution exists only for F > 1. Nonlinear solutions may be ob; 
tained in the region to the right of the points marked on the diagram. 

The physical mechanism which restricts the nonlinear solution to only a portion 
of the parameter space is apparently the formation of a sharp crest at  the surface, 
with an included angle of 120°, exactly as in the cme of Stokes waves. Indeed, Stokes’ 
(1880) original analysis is local to the crest, and takes no account of whether or not 
the rest of the fluid contains waves. 

The dashed line in figure 8 is the approximate position of the boundary of the 
region in which nonlinear, wave-free solutions are expected to exist. Solutions for 
which the parameters F and a describe a point on this line will possess a free surface 
containing a sharp crest where the fluid is at  rest a t  the maximum height ymSx = 1 + QF2. 
This dashed line has been obtained from our numerical results by extrapolating plots 
of maximum free surface elevation versw u2 up to the height ymax at which the crest 
occurs. 

In figure 9 we present nonlinear solutions for F = 2.1, for three different values of 
the circle radius a. The value a = 1.32 is the largest circle radius for which Newton’s 
method converged at  this value of the Froude number. Also shown on this figure is a 
portion of the conjectured limiting profile, containing a sharp crest with sides that 
enclose an angle of 120’. Of course, our existing numerical technique is not capable of 
resolving a region of such high curvature, but it is possible that this difficulty may be 
overcome by spacing points nnerenly at  the free surface. 
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FIGURE 8. The region in the parameter space in which nonlinear wave-free solutions may be 
obtained. The points indicate the highest values of a for whioh Newton's method converged, 
and the dashed line is the boundary of the region in which solutions are conjectured to exist. 

6. Summary and discussion 
Two-dimensional fluid flow over a submerged semicircle has been investigated. The 

solution is facilitated by the choice of the complex potential f, rather than physical 
plane co-ordinates, as the independent variable. 

A linearized solution has been developed by retaining the first term of a regular 
series expansion in the square of the circle radius, a8. For subcritical flow, F < 1, a 
wave-free region is predicted upstream, followed by a regular wave train downstream. 
For F > 1, a symmetric wave-free solution is predicted. There is no solution for F = 1. 

The exact nonlinear equations are solved numerically at the free surface by a 
process of Newtonian iteration. In the subcritical case, F < 1, an essentially wave-free 
region is obtained upstream followed by a train of nonlinear Stokes waves downstream. 
A comparison of the downstream waves obtained by our method with a train of Stokes 
waves confirms the accuracy of our method. In  addition, the accuracy of our results 
is checked by observing that the solut,ions obtained are scarcely affected by further 
reduction in the numerical point spacing. However, due to the relatively small number 
of free-surface points to which we are restricted, we are unable to compute the very 
steep waves obtained when a is large or F is close to one. When a is large, the linearized 
theory severely underpredicts the value of the drag force on the semicircle, indicating 
the importance of nonlinear effects in these cases. 

In  thc supercritical case, F > 1, the symmetric, wave-free profile predicted by the 
linearized solution is confirmed by the nonlinear results, although its physical existence 
seems implausible. It appears that the nonlinear free-surface profile is ultimately 
limited by the formation of a sharp crest with sides that enclose an angle of 120". 
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FIGURE 9. Nonlinear solutions for F = 2.1, and a = 0.7 (- - - - - -), 1.1 (--), 1.32 (-). 
A portion of the conjectured limiting profilo with a 120' angle at the crest is also shown. The 
fluid is flowing from left to right. 

Although we have so far been unable numerically to obtain nonlinear wave-like 
solutions for F = 1, there seems no particular reason to doubt their existence at this 
and higher values of the Froude number, since it is well known that finite-amplitude 
Stokes waves can exist for Froude numbers either side of unity. Indeed, we expect 
that by employing more accurate techniques and a more sophisticated Newton 
iteration routine, these hitherto inaccessible regions of the solution space will become 
available to us. It would therefore appear that in a portion of the supercritical flow 
regime, F > 1, there exists a lack of uniqueness in the solutions to this problem, since 
both the symmetric wave-free solution and a solution containing a train of Stokes 
waves downstream must be considered as possible outcomes. 
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